Free PDF Quiz S90.08B - Accurate SOA Design & Architecture Lab with Services & Microservices Dumps Download

Comments · 25 Views

Free PDF Quiz S90.08B - Accurate SOA Design & Architecture Lab with Services & Microservices Dumps Download, S90.08B Dumps Download,S90.08B Valuable Feedback,Reliable S90.08B Test Duration,S90.08B Excellect Pass Rate,Valid S90.08B Test Sims

First and foremost, in order to cater to the different needs of people from different countries in the international market, we have prepared three kinds of versions of our S90.08B learning questions in this website. Second, we can assure you that you will get the latest version of our S90.08B Training Materials for free from our company in the whole year after payment on S90.08B practice materials. Last but not least, we will provide the most considerate after sale service on our S90.08B study guide for our customers in twenty four hours a day seven days a week.

Actual4dump's expert team has developed a latest short-term effective training scheme for SOA certification S90.08B exam, which is a 20 hours of training for the candidates of SOA certification S90.08B exam. After training they can not only quickly master a lot of knowledge, but also consolidate their original knowledge. So they can easily pass SOA Certification S90.08B Exam and it is much more cost-effective for them than those who spend a lot of time and energy to prepare for the examination.

S90.08B Dumps Download

S90.08B Valuable Feedback, Reliable S90.08B Test Duration

The top features of Actual4dump S90.08B exam questions are the availability of SOA certification exam in three different formats, real, valid, and updated S90.08B exam questions, subject matter experts verified S90.08B Exam Questions, free demo download facility, 1 year updated S90.08B exam questions download facility, affordable price and 100 percent SOA S90.08B exam passing money back guarantee.

SOA Design & Architecture Lab with Services & Microservices Sample Questions (Q15-Q20):

NEW QUESTION # 15
Refer to Exhibit.

Service A is an entity service that provides a Get capability which returns a data value that is frequently changed.
Service Consumer A invokes Service A in order to request this data value (1). For Service A to carry out this request, it must invoke Service B (2), a utility service that interacts (3, 4) with the database in which the data value is stored. Regardless of whether the data value changed, Service B returns the latest value to Service A (5), and Service A returns the latest value to Service Consumer A (6).
The data value is changed when the legacy client program updates the database (7). When this change will occur is not predictable. Note also that Service A and Service B are not always available at the same time.
Any time the data value changes, Service Consumer A needs to receive It as soon as possible. Therefore, Service Consumer A initiates the message exchange shown In the figure several times a day. When it receives the same data value as before, the response from Service A Is ignored. When Service A provides an updated data value, Service Consumer A can process it to carry out its task.
The current service composition architecture is using up too many resources due to the repeated invocation of Service A by Service Consumer A and the resulting message exchanges that occur with each invocation.
What steps can be taken to solve this problem?

  • A. The Asynchronous Queuing pattern can be applied so that messaging queues are established between Service A and Service B and between Service Consumer A and Service A. This way, messages are never lost due to the unavailability of Service A or Service B.
  • B. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and a database monitoring agent introduced through the application of the Service Agent pattern. The database monitoring agent monitors updates made by the legacy client to the database. This way, every time the data value is updated, an event is triggered and the database monitoring agent, acting as the publisher, can notify Service Consumer A, which acts as the subscriber.
    The Asynchronous Queuing pattern can be applied between Service Consumer A and the database monitoring agent so that the event notification message sent out by the database monitoring agent will be received by Service Consumer A, even when Service Consumer A is unavailable.
  • C. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service A and Service B. This way, every time the data value is updated, an event is triggered and Service B, acting as the publisher, can notify Service A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service A and Service B so that the event notification message sent out by Service B will be received by Service A, even when Service A is unavailable.
  • D. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and Service A. This way, every time the data value is updated, an event is triggered and Service A, acting as the publisher, can notify Service Consumer A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service Consumer A and Service A so that the event notification message sent out by Service A will be received by Service Consumer A, even when Service Consumer A is unavailable.

Answer: C

Explanation:
This solution is the most appropriate one among the options presented. By using the Event-Driven Messaging pattern, Service A can be notified of changes to the data value without having to be invoked repeatedly by Service Consumer A, which reduces the resources required for message exchange. Asynchronous Queuing ensures that the event notification message is not lost due to the unavailability of Service A or Service B. This approach improves the efficiency of the service composition architecture.


NEW QUESTION # 16

When Service A receives a message from Service Consumer A (1), the message is processed by Component A. This component first invokes Component B (2), which uses values from the message to query Database A in order to retrieve additional data. Component B then returns the additional data to Component A. Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value.
Component C then returns the data value back to Component A.
Next, Component A sends some of the data It has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to Component A. Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C, and D belong to the Service A service architecture. Database A, the legacy system and the file folders are shared resources within the IT enterprise.
Service A is an entity service with a service architecture that has grown over the past few years. As a result of a service inventory-wide redesign project, you are asked to revisit the Service A service architecture in order to separate the logic provided by Components B, C, and D into three different utility services without disrupting the behavior of Service A as it relates to Service Consumer A.
What steps can be taken to fulfill these requirements?

  • A. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The State Repository and State Messagingpatterns can be applied so that a messaging repository is positioned between Component A and Component C, thereby enabling meta data-driven communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change in behavior can be compensated. The Service Statelessness principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.
  • B. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and Component C, thereby enabling communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change In behavior can be compensated.
    The Service Autonomy principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.
  • C. The Legacy Wrapper pattern can be applied so that Component B Is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. The Legacy Wrapper pattern can be applied once more to Component D so that it is separated into another utility service that provides standardized access to the file folder. The Service Fagade pattern can be applied so that three fagade components are added: one between Component A and each of the new wrapper utility services. This way, the fagade components can compensate for any change in behavior that may occur as a result of the separation. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.
  • D. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. Component D can also be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher-subscriber relationship between this new service and Component A. The interaction between Service Consumer A and Component A can then be redesigned so that Component A first interacts with Component B and the new wrapper service. Service A then issues a final message back to Service Consumer A. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.

Answer: C


NEW QUESTION # 17
Refer to Exhibit.

Service Consumer A sends a message to Service A (1), which then forwards the message to Service B (2). Service B forwards the message to Service C (3), which finally forwards the message to Service D (4). However, Services A, B and C each contain logic that reads the contents of the message to determine what intermediate processing to perform and which service to forward the message to. As a result, what is shown in the diagram is only one of several possible runtime scenarios.
Currently, this service composition architecture is performing adequately, despite the number of services that can be involved in the transmission of one message. However, you are told that new logic is being added to Service A that will require it to compose one other service to retrieve new data at runtime that Service A will need access to in order to determine where to forward the message to. The involvement of the additional service will make the service composition too large and slow.
What steps can be taken to improve the service composition architecture while still accommodating the new requirements and avoiding an increase in the amount of service composition members?

  • A. The Intermediate Routing pattern can be applied together with the Service Agent pattern to establish a service agent capable of intercepting and forwarding the message at runtime based on pre-defined routing logic. The Service Composability principle can be further applied to ensure that all services are designed as effective service composition participants.
  • B. The Service Instance Routing pattern can be applied to introduce a Routing service to provide a centralized service to contain routing-related business rules. This new Routing service can be accessed by Service A and Service C so they can determine where to forward messages to at runtime. The Service Reusability principle can be further applied to ensure that the logic in all remaining services is designed to be multi-purpose and reusable.
  • C. The Intermediate Routing pattern can be applied together with the Service Agent pattern by removing Service B or Service C from the service composition and replacing it with a service agent capable of intercepting and forwarding the message at runtime based on pre-defined routing logic. The Service Discoverability principle can be further applied to ensure that Service A can be found by any future service consumers.
  • D. The Asynchronous Queuing pattern can be applied together with a Routing service that is invoked by messages read from a messaging queue. This new Routing service can replace Service B and can be accessed by Service A and Service C so they can determine where to forward messages to at runtime. The Service Loose Coupling principle can be further applied to ensure that the new Routing service remains decoupled from other services so that it can perform its routing functions independently from service contract invocation.

Answer: A

Explanation:
This solution addresses the issue of the service composition becoming too large and slow by introducing a new Routing service that is invoked by messages read from a messaging queue. This allows Service A and Service C to determine where to forward messages to at runtime without the need for additional services in the composition. The Service Loose Coupling principle is applied to ensure that the new Routing service remains decoupled from other services so that it can perform its routing functions independently from service contract invocation.


NEW QUESTION # 18
Refer to Exhibit.

Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates. Service A must interact with three other services that each provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing either a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing either a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing either a success or failure code (6).
Services B, C and D are agnostic services that are reused and shared by multiple service consumers. This has caused unacceptable performance degradation for the service consumers of Service A as it is taking too long to complete its overall task. You've been asked to enhance the service composition architecture so that Service A provides consistent and predictable runtime performance. You are furthermore notified that a new type of data will be introduced to all three databases. It is important that this data is exchanged in a standardized manner so that the data model used for the data in inter-service messages is the same.
What steps can be taken to fulfill these requirements?

  • A. The Service Fagade pattern is applied to all services in order to create an intermediary processing layer within each service architecture. The Content Negotiation pattern is applied so that each service fagade component within each service architecture is equipped with the logic required to defer request messages to other service instances when concurrent usage of the service is high, and to further apply the conversation logic necessary to convert proprietary data from a database into the standardized XML schema format.
  • B. The Redundant Implementation pattern is applied to Service A, along with the Service Instance Routing pattern. This allows for multiple instances of Service A to be created across multiple physical implementations, thereby increasing scalability and availability. The Dual Protocols pattern is applied to all services to support proprietary and standardized data models.
  • C. The Compensating Service Transaction pattern can be applied so that exception logic is executed to notify Service A whenever the data access logic executed by Service B, C, or D takes too long. If the execution time exceeds a predefined limit, then the overall service activity is cancelled and a failure code is returned to Service A. The Schema Centralization pattern is applied to ensure that all services involved in the composition use the same schemas to represented the data consistently.
  • D. The Composition Autonomy pattern can be applied to establish an isolated environment in which redundant implementations of Services B, C and D are accessed only by Service A. The Canonical Schema pattern can be applied to ensure that the new type of data is represented by the same data model, regardless of which service sends or receives a message containing the data.

Answer: D

Explanation:
This approach isolates the services used by Service A, allowing it to avoid the performance degradation caused by multiple service consumers. By creating redundant implementations of Services B, C, and D that are accessed only by Service A, the Composition Autonomy pattern also ensures that Service A's runtime performance is consistent and predictable. Applying the Canonical Schema pattern ensures that the new type of data is exchanged in a standardized manner, ensuring consistent representation of the data model used for the data in inter-service messages.


NEW QUESTION # 19
Refer to Exhibit.

Service Consumer A and Service A reside in Service Inventory A. Service B and Service C reside in Service Inventory B. Service D is a public service that can be openly accessed via the World Wide Web. The service is also available for purchase so that it can be deployed independently within IT enterprises. Due to the rigorous application of the Service Abstraction principle within Service Inventory B, the only information that is made available about Service B and Service C are the published service contracts. For Service D, the service contract plus a service level agreement (SLA) are made available. The SLA indicates that Service D has a planned outage every night from 11:00pm to midnight.
You are an architect with a project team that is building services for Service Inventory A. You are told that the owners of Service Inventory A and Service Inventory B are not generally cooperative or communicative. Cross-inventory service composition is tolerated, but not directly supported. As a result, no SLAs for Service B and Service C are available and you have no knowledge about how available these services are. Based on the service contracts you can determine that the services in Service Inventory B use different data models and a different transport protocol than the services in Service Inventory A. Furthermore, recent testing results have shown that the performance of Service D is highly unpredictable due to the heavy amount of concurrent access it receives from service consumers from other organizations. You are also told that there is a concern over how long Service Consumer A will need to remain stateful while waiting for a response from Service A.
What steps can be taken to solve these problems?

  • A. The Containerization pattern can be applied to establish an environment for Service A to perform its processing autonomously. This gives Service A the flexibility to provide Service Consumer A with response messages consistently. The Asynchronous Queuing pattern can be applied so that a central messaging queue is positioned between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C.
  • B. The Event-Driven Messaging pattern can be applied to establish a subscriber-publisher relationship between Service Consumer A and Service A. This gives Service A the flexibility to provide its response to Service Consumer A whenever it is able to collect the three data values without having to require that Service Consumer A remain stateful. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house and made part of Service Inventory A.
  • C. The Asynchronous Queuing pattern can be applied to position a message queue between Service A and Service B, between Service A and Service C, and between Service A and Service D. Additionally, a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory B.
  • D. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C and so that a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory A.

Answer: C

Explanation:
The Asynchronous Queuing pattern is applied to position a messaging queue between Service A, Service B, Service C, Service D, and Service Consumer A. This ensures that messages can be passed between these services without having to be in a stateful mode.
The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B, Service A and Service C, and Service A and Service D, despite their different data models and transport protocols.
The Redundant Implementation pattern is applied to bring a copy of Service D in-house to ensure that it can be accessed locally and reduce the unpredictability of its performance.
The Legacy Wrapper pattern is applied to wrap Service D with a standardized service contract that complies with the design standards used in Service Inventory B. This is useful for service consumers who want to use Service D but do not want to change their existing applications or service contracts.
Overall, this approach provides a comprehensive solution that addresses the issues with Service A, Service B, Service C, and Service D, while maintaining compliance with the Service Abstraction principle.


NEW QUESTION # 20
......

Laziness will ruin your life one day. It is time to have a change now. Although we all love cozy life, we must work hard to create our own value. Then our S90.08B study materials will help you overcome your laziness. Study is the best way to enrich your life. Our S90.08B study materials are suitable for various people. No matter you are students, office workers or common people, you can have a try. In addition, you can take part in the S90.08B Exam if you finish all learning tasks. The certificate issued by official can inspire your enthusiasm.

S90.08B Valuable Feedback: https://www.actual4dump.com/SOA/S90.08B-actualtests-dumps.html

SOA S90.08B Exam with Braindumps-Guaranteed Success: Getting guarantee while purchasing a S90.08B dumps pdf is like a treat, SOA S90.08B Dumps Download Long-term training doesn't seem to be suitable for anyone, SOA S90.08B Dumps Download Comprehensive Q&A with complete details, In fact, we offer a comprehensive customer service should you experience any problem with our SOA S90.08B exam braindumps.

In a traditional component team structure, the team is usually given responsibility (https://www.actual4dump.com/SOA/S90.08B-actualtests-dumps.html) for handling defects related to their component, Second, it is especially important for understanding the concept of Japanese will.

100% Pass Reliable S90.08B - SOA Design & Architecture Lab with Services & Microservices Dumps Download

SOA S90.08B Exam with Braindumps-Guaranteed Success: Getting guarantee while purchasing a S90.08B dumps pdf is like a treat, Long-term training doesn't seem to be suitable for anyone.

Comprehensive Q&A with complete details, In fact, we offer a comprehensive customer service should you experience any problem with our SOA S90.08B exam braindumps.

Or you can compare its price with any other study guides.

Read more
Comments
For your travel needs visit www.urgtravel.com